Indexes
This page details how to create, delete and retrieve indexes on Marqo Cloud. Find your Marqo Cloud API key through heading to the Marqo console, in the API keys
tab.
Create index
POST https://api.marqo.ai/api/indexes/{index_name}
Create and index with (optional) settings.
This endpoint accepts the application/json
content type.
Marqo Cloud creates dedicated infrastructure for each index. Using the create index endpoint, you can specify the type of storage for the index storage_class
and the type of inference inference_type
. The number of storage instances is defined by number_of_shards
, the number of replicas number_of_replicas
and the number of Marqo inference nodes by number_of_inferences
.
Example
curl -XPOST 'https://api.marqo.ai/api/indexes/my-first-index' \
-H 'x-api-key: XXXXXXXXXXXXXXX' \
-H 'Content-type:application/json' -d '
{
"index_defaults": {
"treat_urls_and_pointers_as_images": false,
"model": "hf/all_datasets_v4_MiniLM-L6"
},
"number_of_shards": 1,
"number_of_replicas": 0,
"inference_type": "marqo.CPU.small",
"storage_class": "marqo.basic",
"number_of_inferences": 1
}'
import marqo
mq = marqo.Client("https://api.marqo.ai", api_key="XXXXXXXXXXXXXXX")
index_settings = {
"index_defaults": {
"treat_urls_and_pointers_as_images": True,
"model": "hf/all_datasets_v4_MiniLM-L6"
},
"number_of_shards": 1,
"number_of_replicas": 0,
"inference_type": "marqo.CPU.small",
"storage_class": "marqo.basic",
"number_of_inferences": 1
}
mq.create_index("my-first-index", settings_dict=index_settings)
Response: 200 OK
{"acknowledged":true, "shards_acknowledged":true, "index":"my-first-index"}
Path parameters
Name | Type | Description |
---|---|---|
index_name |
String | name of the index |
Body Parameters
The settings for the index. The settings are represented as a nested JSON object.
Name | Type | Default value | Description |
---|---|---|---|
index_defaults |
Dictionary | "" |
The index defaults object |
inference_type |
String | marqo.CPU.small |
Type of inference for the index. Options are "marqo.CPU.small", "marqo.CPU.large", "marqo.GPU". |
storage_class |
String | marqo.basic |
Type of storage for the index. Options are "marqo.basic", "marqo.balanced", "marqo.performance". |
number_of_shards |
Integer | 1 |
The number of shards for the index. |
number_of_replicas |
Integer | 0 |
The number of replicas for the index. |
number_of_inferences |
Integer | 1 |
The number of inference nodes for the index. |
Index Defaults Object
The index_defaults
object contains the default settings for the index. The parameters are as follows:
Name | Type | Default value | Description |
---|---|---|---|
treat_urls_and_pointers_as_images |
Boolean | "" |
Fetch images from pointers |
model |
String | hf/all_datasets_v4_MiniLM-L6 |
The model to use for the index |
model_properties |
Dictionary | "" |
The model properties object (for custom models) |
normalize_embeddings |
Boolean | true |
Normalize the embeddings to have unit length |
text_preprocessing |
Dictionary | "" |
The text preprocessing object |
image_preprocessing |
Dictionary | "" |
The image preprocessing object |
ann_parameters |
Dictionary | "" |
The ANN algorithm parameter object |
Text Preprocessing Object
The text_preprocessing
object contains the specifics of how you want the index to preprocess text. The parameters are as follows:
Name | Type | Default value | Description |
---|---|---|---|
split_length |
Integer | 2 |
The length of the chunks after splitting by split_method |
split_overlap |
Integer | 0 |
The length of overlap between adjacent chunks |
split_method |
String | sentence |
The method by which text is chunked (character , word , sentence , or passage ) |
Image Preprocessing Object
The image_preprocessing
object contains the specifics of how you want the index to preprocess images. The parameters are as follows:
Name | Type | Default value | Description |
---|---|---|---|
patch_method |
String | null |
The method by which images are chunked (simple or frcnn ) |
ANN Algorithm Parameter object
The ann_parameters
object contains hyperparameters for the approximate nearest neighbour algorithm used for tensor storage within Marqo. The parameters are as follows:
Name | Type | Default value | Description |
---|---|---|---|
space_type |
String | cosinesimil |
The function used to measure the distance between two points in ANN (l1 , l2 , linf , or cosinesimil ). |
parameters |
Dict | "" |
The hyperparameters for the ANN method (which is always hnsw for Marqo). |
HNSW Method Parameters Object
parameters
can have the following values:
Name | Type | Default value | Description |
---|---|---|---|
ef_construction |
int | 128 |
The size of the dynamic list used during k-NN graph creation. Higher values lead to a more accurate graph but slower indexing speed. It is recommended to keep this between 2 and 800 (maximum is 4096) |
m |
int | 16 |
The number of bidirectional links that the plugin creates for each new element. Increasing and decreasing this value can have a large impact on memory consumption. Keep this value between 2 and 100. |
Model Properties Object
model_properties
is a flexible object that is used to set up models that aren't available in Marqo by default (models available by default are listed here).
The structure of model_properties will vary depending on the model.
For Open CLIP models, see here for model_properties
format and example usage.
For Generic SBERT models, see here for model_properties
format and example usage.
Below is a sample index settings JSON object. When using the Python client, pass this dictionary as the settings_dict
parameter for the create_index
method.
{
"index_defaults": {
"treat_urls_and_pointers_as_images": false,
"model": "hf/all_datasets_v4_MiniLM-L6",
"normalize_embeddings": true,
"text_preprocessing": {
"split_length": 2,
"split_overlap": 0,
"split_method": "sentence"
},
"image_preprocessing": {
"patch_method": null
},
"ann_parameters" : {
"space_type": "cosinesimil",
"parameters": {
"ef_construction": 128,
"m": 16
}
}
},
"number_of_shards": 3,
"number_of_replicas": 0,
"inference_type": "marqo.GPU",
"storage_class": "marqo.balanced",
"number_of_inferences": 1
}
Delete index
Delete an index.
Note: This operation cannot be undone, and the deleted index can't be recovered
DELETE /indexes/{index_name}
Example
curl -H 'x-api-key: XXXXXXXXXXXXXXX' -XDELETE https://api.marqo.ai/api/indexes/my-first-index
results = mq.index("my-first-index").delete()
Response: 200 OK
{"acknowledged": true}
List indexes
GET /indexes
Example
curl -H 'X-API-KEY: XXXXXXXXXXXXXXX' https://api.marqo.ai/api/indexes
mq.get_indexes()
Response: 200 OK
{
"results": [
{
"docs.count":"0",
"Created":"2023-08-28T03:18:19.824604",
"docs.deleted":"0",
"search.query_total":"0",
"store.size":"0",
"data_size":208,
"index_name":"test",
"number_of_shards":"1",
"number_of_replicas":"0",
"index_status":"READY",
"number_of_inferences":"1",
"storage_class":"BASIC",
"inference_type":"CPU.SMALL",
"index_defaults":{
"text_preprocessing":{
"split_length":"2",
"split_method":"sentence",
"split_overlap":"0"
},
"ann_parameters": {
"parameters":{
"ef_construction":"128",
"m":"16"
},
"space_type":"cosinesimil"
},
"model":"hf/all_datasets_v4_MiniLM-L6",
"normalize_embeddings":true,
"image_preprocessing":{
"patch_method":null
},
"treat_urls_and_pointers_as_images":false
},
"doc_count":0,
"error_msg":null,
"endpoint":"https://test-npe2d0-fd0c8262-62e4-47ad-b85b-5ef85cac7c15.dp1.marqo.ai"
}
]
}